
Monte Carlo methods for phase equilibria of fluids

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 R25

(http://iopscience.iop.org/0953-8984/12/3/201)

Download details:

IP Address: 171.66.16.218

The article was downloaded on 15/05/2010 at 19:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter12 (2000) R25–R52. Printed in the UK PII: S0953-8984(00)98242-0

REVIEW ARTICLE

Monte Carlo methods for phase equilibria of fluids

Athanassios Z Panagiotopoulos
Institute for Physical Science and Technology and Department of Chemical Engineering,
University of Maryland, College Park, MD 20742-2431, USA

E-mail: thanos@ipst.umd.edu

Received 9 October 1998

Abstract. This article presents an overview of Monte Carlo methods for simulations of the
phase behaviour of fluids. The Gibbs ensemble method and histogram-reweighting Monte Carlo
techniques are described in detail. The Gibbs ensemble method is based on simulations of two
regions coupled via volume change and particle transfer moves so that the conditions for phase
coexistence are satisfied in a statistical sense. Histogram-reweighting methods obtain the free
energy of a system over a broad range of conditions from a small set of grand canonical Monte
Carlo calculations. The histogram methods can produce highly accurate data, especially in the
vicinity of critical points. Other methods described briefly include interfacial simulations, the
NPT + test particle method, Gibbs–Duhem integration and pseudo-ensembles. Configurational-
bias sampling techniques and expanded ensembles can be used for multisegment molecules to
increase the efficiency of the simulations. The last section of the review covers applications to both
model and realistic systems that have appeared since 1995.

1. Introduction

The phase behaviour of fluids and their mixtures is of central importance to many technological
and scientific fields, for example in designing separations for the chemical and pharmaceutical
industries, understanding fundamental processes in living systems, or even modelling of the
global climate. A large body of experimental information has been gathered over the years
(e.g. see [1]), and significant efforts have been made to understand the phenomenology of the
transitions and obtain empirically and theoretically based models that can be used to correlate
and extend the range of experimental data. Experimental measurements are time consuming
and expensive. For multicomponent mixtures, measurements are available only for a limited
number of temperatures, pressures and compositions. Empirical models are only valid over
the range of conditions for which experimental data have been used for obtaining the model
parameters. Even theoretically based models have limited predictive abilities for conditions
and systems different from the ones for which they have been tested against experimental
data [2].

Molecule-based simulations are an increasingly important alternative to experimental
measurements and theoretical techniques for obtaining properties of fluids and materials. The
focus of the present review is on simulations of phase equilibrium properties of classical
fluids. Classical force-field-based simulations start by postulating a functional form for
the intermolecular forces in a system. Equilibrium properties can generally be obtained
by either Monte Carlo or molecular dynamics methods. Monte Carlo methods are based
on generating configurations from the appropriate probability distribution for a statistical
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mechanical ensemble, while molecular dynamics methods generate configurations by solving
Newton’s equations of motion. Calculations by simulation of simple structural and energetic
properties (such as pair correlation functions, the mean configurational energy or pressure)
are relatively straightforward, but the prediction of the order and precise location of phase
transitions is not a simple matter. Phase transitions are collective phenomena that occur
over timescales and length scales that are not directly accessible to molecular dynamics
or simple constant-volume Monte Carlo simulations. Until the mid-1980s, obtaining the
phase behaviour of even a simple one-component system required a major research effort [3].
Methodological developments since then have rendered the determination of phase equilibria
by simulation much easier than before. Most of these methodological advances have involved
the development of novel Monte Carlo algorithms, which are the focus of the present review.
In addition, the sustained increases in computing hardware capabilities have greatly expanded
the range of systems that can be studied on readily available machines. As a result, the
number of simulation studies of both model potentials and realistic systems has dramatically
increased.

A number of textbooks, research monographs and review articles have appeared previously
in the area of the present article. The book by Allen and Tildesley [4] on computer simulation
methods for liquids provides an excellent introduction to molecular dynamics and Monte
Carlo methods, but does not cover the major recent methodological advances, since it was
published in 1987. The recent book by Frenkel and Smit [5] has comprehensive coverage
of molecular simulation methods for fluids, with particular emphasis on algorithms for phase
equilibrium calculations. It describes many of the techniques mentioned in the present article in
significantly more detail than is possible here. The Gibbs ensemble method and its applications
have been reviewed in [6–9]. Proceedings of a recent NATO Advanced Study Institute on
simulations of phase transitions [10] and general review articles on simulation methods and
their applications (e.g. [11–13]) are also available.

Knowledge of the chemical potential of all components (or the free energy) of a system
as a function of temperature, density and composition is, of course, sufficient to determine
the phase behaviour. Such methods include thermodynamic integration, a very general
technique in which the state of interest is linked via a reversible path to a state of known
free energy [5], and the Widom test particle insertion method [14]. The present article focuses
on methods that were specifically designed for phase equilibrium calculations. The relative
precision and accuracy of methods for obtaining the chemical potential have been examined
in [15].

The plan of this article is as follows. Direct interfacial simulation methods are reviewed in
section 2. Such simulations provide information on the properties of interfaces which cannot
be obtained from other techniques, but require relatively large systems and do not give reliable
results near critical points. Section 3 deals with the Gibbs ensemble Monte Carlo method,
which is based on simultaneous calculations in two regions representing equilibrium phases,
coupled indirectly via particle transfers and volume changes. The method is now commonly
used for obtaining phase equilibria of fluids, because of its simplicity and speed. A single
Gibbs ensemble simulation gives a point on the phase envelope of a multicomponent system.
A number of other methods designed for direct calculations of phase equilibria are described
in section 4. TheNPT + test particle method (section 4.1) is based on chemical potential
calculations. The method has roughly the same range of applicability and limitations as the
Gibbs ensemble method, but requires multiple simulations per coexistence point. Gibbs–
Duhem integration (section 4.2) does not require particle insertions and removals and is
applicable for transitions involving solids. It needs to start, however, from a point on the
phase envelope determined by one of the other techniques. Pseudo-ensembles (section 4.3)



Monte Carlo methods for phase equilibria of fluids R27

provide significant flexibility in determinations of phase equilibria under different external
constraints and can be implemented in combination with the Gibbs ensemble or Gibbs–
Duhem integrations. Histogram-reweighting methods (section 5) provide the free energy and
phase behaviour with excellent accuracy and can be used in the vicinity of critical points.
The majority of simulation methods for calculations of phase transitions rely on particle
transfers, which become impractical for dense systems or multisegment molecules. A number
of methods have been developed for improving the efficiency of particle transfers and have
been instrumental in enabling calculations for realistic potential models. Configurational-bias
sampling techniques that perform ‘smart’ insertions at favourable locations are described in
section 6.1. Expanded ensembles are based on gradual transfers of parts of molecules and
are described in section 6.2. The last part of this review (section 7) describes applications
of simulations to calculations of the phase behaviour of both highly idealized and realistic
intermolecular potential models. The paper concludes with a discussion of the relative strengths
and weaknesses of the methods discussed and provides some suggestions for possible future
research directions in the field.

2. Direct interfacial simulations

Conceptually, the simplest possible approach for determining phase equilibria by simulation
is to set up a system with an explicit interface. Applications of direct interfacial simulations,
which can be performed by either Monte Carlo or molecular dynamics algorithms, have been
reviewed by Rowlinson and Widom [16] and Gubbins [17]. Despite the simplicity of the
approach, there are difficulties associated with setting up and equilibrating a system with two
coexisting phases. Simulations involving many particles and long equilibration times are often
required even for simple spherically symmetric potentials [18]. Even with large systems, a
significant fraction of particles are near the interface and have properties which may not be
representative of their behaviour in the bulk. When the density difference between the two
coexisting phases is small, it is impossible to set up a stable two-phase system. For fluids with
low vapour pressures, for any reasonable system size, very few particles can be found in the
gas phase. Direct interfacial simulations do not require particle transfers at random locations,
contrary to many other methods described in this review. For dense systems for which such
transfers have low acceptance probabilities, direct interfacial methods would seem to have an
advantage. However, equilibration of the chemical potential by diffusion through the interface
is also exceedingly slow under such conditions [19].

Two-phase simulations have been used when no other practical alternative could be found
for the system and conditions of interest [20–22]. An example of a direct interfacial simulation
of a model lattice surfactant system is shown in figure 1. The two coexisting phases are a low-
density gas phase at the two sides of the simulation cell, and a high-density lamellar phase
in the middle. Density modulations within the lamellar phase are evident. One advantage of
direct interfacial simulations is that they provide information on the structure of the interface
and on the surface tension between coexisting phases [23–27].

An interesting extension of direct interfacial simulation methods is to combine them with
configurational-bias concepts described in section 6.1. Such a combination has been described
by Yanet al [19] for simulations of lattice homopolymers. Configurational-bias moves attempt
to take a particle to a new random location in the simulation box, thus addressing one of the
limitations of direct interfacial simulations, namely slow diffusion through the interface. It
is not clear, however, that this method is competitive in terms of accuracy with histogram-
reweighting methods that can be used for the same models [28,73].
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Figure 1. The volume fraction profile for a ternary oil–water–amphiphile system on a 20×20×160
lattice. Continuous lines are for oil, long dashed lines for amphiphile and short dashed lines for
water. Reprinted by permission from [22]. ©1996 American Institute of Physics.

3. Gibbs ensemble Monte Carlo simulation

The Gibbs ensemble Monte Carlo simulation methodology [29–31] enables direct simulations
of phase equilibria in fluids. A schematic diagram of the technique is shown in figure 2. Let
us consider a macroscopic system with two phases coexisting at equilibrium. Gibbs ensemble
simulations are performed in two separate microscopic regions, each within periodic boundary
conditions (denoted by the dashed lines in figure 2). The thermodynamic requirements for
phase coexistence are that each region should be in internal equilibrium, and that temperature,
pressure and the chemical potentials of all components should be the same in the two regions.
System temperature in Monte Carlo simulations is specified in advance. The remaining three
conditions are satisfied by performing three types of Monte Carlo move, displacements of
particles within each region (to satisfy internal equilibrium), fluctuations in the volume of the

or

Phase II

T

starting
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displacements orvolume
changes

particle
transfers

Phase I

Figure 2. A schematic diagram of the Gibbs ensemble Monte Carlo simulation methodology.
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two regions (to satisfy equality of pressures) and transfers of particles between regions (to
satisfy equality of chemical potentials of all components).

The acceptance criteria for the Gibbs ensemble were originally derived from fluctuation
theory [29]. An approximation was implicitly made in the derivation that resulted in a difference
in the acceptance criterion for particle transfers proportional to 1/N relative to the exact
expressions given subsequently [30]. A full development of the statistical mechanics of the
ensemble was given by Smitet al [31] and Smit and Frenkel [32], which we follow here. A
one-component system at constant temperatureT , total volumeV and total number of particles
N is divided into two regions, with volumesVI andVII = V − VI , and numbers of particles
NI andNII = N −NI . The partition function,QNVT is

QNVT = 1

33NN !

N∑
NI=0

(
N

NI

)∫ V

0
dVI V

NI
I V

NII
II

∫
dξNII exp[−βUI (NI )]

×
∫

dξNIIII exp[−βUII (NII )] (1)

where3 is the thermal de Broglie wavelength,β = 1/kBT , kB is Boltzmann’s constant,ξI
andξII are the scaled coordinates of the particles in the two regions andU(N) is the total
intermolecular potential of interaction ofN particles. Equation (1) represents an ensemble
with probability density℘(NI , VI ;N,V, T ):
℘(NI , VI ;N,V, T ) ∝ N !

NI !NII !
exp[NI lnVI +NII lnVII − βUI (NI )− βUII (NII )] . (2)

Smit et al [31] used the partition function given by equation (1) and a free-energy-
minimization procedure to show that for a system with a first-order phase transition, the two
regions in a Gibbs ensemble simulation are expected to reach the correct equilibrium densities.

The acceptance criteria for the three types of move can be immediately obtained from
equation (2). For a displacement step internal to one of the regions, the probability of
acceptance is the same as for conventional constant-NVT simulations:

℘move = min[1, exp(−β 1U)] (3)

where1U is the configurational energy change resulting from the displacement. For a volume
change step during which the volume of region I is increased by1V with a corresponding
decrease of the volume of region II,

℘volume = min

[
1, exp

(
− β 1UI − β 1UII +NI ln

VI +1V

VI
+NII ln

VII −1V
VII

)]
. (4)

Equation (4) implies that sampling is performed uniformly in the volume itself. The acceptance
criterion for particle transfers, written here for transfer from region II to region I, is

℘transf er = min

[
1,

NIIVI

(NI + 1)VII
exp(−β 1UI − β 1UII )

]
. (5)

Equation (5) can be readily generalized to multicomponent systems. The only difference is
that the number of particles of speciesj in each of the two regions,NI,j andNII,j , replace
NI andNII respectively. In simulations of multicomponent systems dilute in one component,
it is possible that the number of particles of a species in one of the two regions becomes zero
after a successful transfer out of that region. Equation (5) in this case is taken to imply that
the probability of transfer out of an empty region is zero.

The acceptance rules to this point are for a simulation in which the total system is at
constant number of molecules, temperature and volume. For pure component systems, the
phase rule requires that only one intensive variable (in this case system temperature) can be
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independently specified when two phases coexist. The vapour pressure is obtained from the
simulation. By contrast, for multicomponent systems pressure can be specified in advance,
with the total system being considered at constantNPT . The probability density for this case,
℘(NI , VI ;N,P, T ), is

℘(NI , VI ;N,P, T ) ∝ N !

NI !NII !
exp

[
NI lnVI +NII lnVII − βUI (NI )− βUII (NII )

− βP (VI + VII )
]

(6)

and the only change necessary in the algorithm is that the volume changes in the two regions
are now made independently. The acceptance criterion for a volume change step in which the
volume of region I is changed by1V , while the other region remains unchanged, is then

℘volume = min

[
1, exp

(
−β 1UI +NI ln

VI +1V

VI
− βP 1V

)]
. (7)

An interesting extension of the original methodology was proposed by Lopes and Tildesley
[33], to allow the study of more than two phases at equilibrium. The extension is based on
setting up a simulation with as many boxes as the maximum number of phases expected to be
present. Kristof and Liszi [34,35] have proposed an implementation of the Gibbs ensemble in
which the total enthalpy, pressure and number of particles in the total system are kept constant.
Molecular dynamics versions of the Gibbs ensemble algorithm are also available [36–38].

The physical reason for the ability of the Gibbs ensemble to converge to a state that
contains phases at their equilibrium density in the corresponding boxes, rather than a mixture
of the two phases in each box, is the free-energy cost for creating and maintaining an interface.
Essentially, in the Gibbs ensemble, one trades off the directness of the interfacial simulation
approach with the (slight) inconvenience of setting up and maintaining two or more boxes for
the equilibrium phases. However, much smaller system sizes can be used relative to interfacial
simulations, and the simulations are generally stable, except in the immediate vicinity of critical
points.

Near critical points Gibbs ensemble simulations become unstable because the free-energy
penalty for creating an interface becomes small. In a detailed study of the behaviour of Gibbs
ensemble simulations near critical points, Valleau [39] concluded that ‘it is only with extreme
care . . . that reliable information on critical parameters or the shapes of coexistence curves
may be obtained from Gibbs ensemble simulations.’ The cause of the problems is that near
critical points finite-size effects are present, and there is no mechanism for controlling system
size of each individual region in the Gibbs ensemble. A better approach for dealing with
systems near critical points is provided by the histogram methods described in section 5. The
finite-size critical behaviour of the Gibbs ensemble has been examined by Bruce [40], Mon
and Binder [41] and Panagiotopoulos [42]. The ‘standard’ procedure for obtaining critical
points from Gibbs ensemble simulations is to fit subcritical coexistence data to universal
scaling laws. This approach has a weak theoretical foundation, since the universal scaling
laws are only guaranteed to be valid in the immediate vicinity of the critical point, where
simulations give the wrong (classical) behaviour due to the truncation of the correlation length
at the edge of the simulation box. In many cases, however, the resulting critical points are
in reasonable agreement with more accurate results obtained from finite-size scaling methods
(section 5.3).

In summary, the Gibbs ensemble Monte Carlo methodology provides a direct and efficient
route to the phase coexistence properties of fluids, for calculations of moderate accuracy. The
method has become a standard tool for the simulation community, as evidenced by the large
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number of applications using the method that are described in section 7. Histogram-reweighting
techniques (section 5) have the potential for higher accuracy, especially if equilibria at a large
number of state points are to be determined. Histogram methods are also inherently better at
determining critical points. In its original form, the Gibbs ensemble method is not practical
for multisegment or strongly interacting systems, but development of configurational-bias
sampling methods described in section 6.1 has overcome this limitation.

4. TheNPT + test particle method, Gibbs–Duhem integration and pseudo-ensembles

4.1. TheNPT + test particle method

TheNPT + test particle method [43, 44] is based on calculations of the chemical potentials
for a number of state points. A phase coexistence point is determined at the intersection of the
vapour and liquid branches of the chemical potential versus pressure diagram. The Widom
test particle method [14] or any other suitable method [15] can be used to obtain the chemical
potentials. Corrections to the chemical potential of the liquid and vapour phases can be made,
using standard thermodynamic relationships, for deviations between the pressure at which the
calculations were made and the actual coexistence pressure. Extrapolations with respect to
temperature are also possible [45].

In contrast to the Gibbs ensemble case, a number of simulations are required per
coexistence point, but the number can be quite small, especially for vapour–liquid equilibrium
calculations away from the critical point. For example, for a one-component system near the
triple point, the density of the dense liquid can be obtained from a singleNPT simulation
at zero pressure. The chemical potential of the liquid, in turn, determines the density of the
(near-ideal) vapour phase, so only one simulation is required. The method has been extended to
mixtures [46,47]. Significantly lower statistical uncertainties were obtained in [47] compared
to earlier Gibbs ensemble calculations of the same Lennard-Jones binary mixtures, but the
NPT + test particle method calculations were based on longer simulations.

The NPT + test particle method shares many characteristics with the histogram-
reweighting methods discussed in section 5. In particular, histogram-reweighting methods
also obtain the chemical potentials and pressures of the coexisting phase from a series of
simulations. The corrections to the chemical potentials for changes in pressure [44] and
temperature [45] are similar to the concept of reweighting of combined histograms from grand
canonical simulations to new densities and temperatures.

Spyriouni et al [48, 49] have presented a powerful method (called ‘SPECS’) for
calculations of polymer phase behaviour related to theNPT + test particle method. The
method of Spyriouniet al targets the calculation of the phase behaviour of long-chain systems
for which the test particle method for calculation of chemical potentials fails. For sufficiently
long chains, even the configurational-bias sampling methods discussed in section 6.1 become
impractical. For binary mixtures of a low-molecular-weight solvent (species 1) and a polymer
(species 2), two parallel simulations are performed in the(µ1, N2, P , T )ensemble at conditions
near the expected coexistence curve. The chemical potential of component 2 is determined
through the ‘chain increment’ technique [50]. Iterative calculations at corrected values of the
chemical potential of the solvent are performed until the chemical potential of the polymer in
the two phases is equal. For the special case of a dilute solutions, estimates of the chemical
potentials of the solvent and polymer for compositions different from the original simulation
conditions can be made using standard thermodynamic relations and the number of required
iterations is significantly reduced.
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4.2. Gibbs–Duhem integration

Most methods for determination of phase equilibria by simulation rely on particle insertions
to equilibrate or determine the chemical potentials of the components. Methods that rely on
insertions experience severe difficulties for dense or highly structured phases. If a point on the
coexistence curve is known (e.g. from Gibbs ensemble simulations), the remarkable method of
Kofke [51,52] enables the calculation of a complete phase diagram from a series of constant-
pressure simulations that do not involve any transfers of particles. For one-component systems,
the method is based on integration of the Clausius–Clapeyron equation over temperature:(

dP

dβ

)
sat

= − 1H

β 1V
(8)

wheresat indicates that the equation holds on the saturation line, and1H is the difference in
enthalpy between the two coexisting phases. The right-hand side of equation (8) involves only
‘mechanical’ quantities that can be simply determined in the course of a standard Monte Carlo
or molecular dynamics simulation. From the known point on the coexistence curve, a change
in temperature is chosen, and the saturation temperature at the new temperature is predicted
from equation (8). Two independent simulations for the corresponding phases are performed
at the new temperature, with gradual changes of the pressure as the simulations proceed to take
into account the enthalpies and densities at the new temperature as they are being calculated.

Questions related to propagation of errors and numerical stability of the method have
been addressed in [52] and [53]. Errors in initial conditions resulting from uncertainties in the
coexistence densities can propagate and increase with distance from the starting point when the
integration path is towards the critical point [53]. Near critical points, the method suffers from
instability of a different nature. Because of the small free-energy barrier for conversion of one
phase into the other, even if the coexistence pressure is set properly, the identity of each phase
is hard to maintain and large fluctuations in density are likely. The solution to this last problem
is to borrow an idea from the Gibbs ensemble method and couple the volume changes of the
two regions [52]. Extensions of the method to calculations of three-phase coexistence lines are
presented in [54] and to multicomponent systems in [53]. Unfortunately, for multicomponent
systems the Gibbs–Duhem integration method cannot avoid particle transfers—however, it
avoids transfers for one component, typically the one that is the hardest to transfer. The
method and its applications have been recently reviewed [55].

In some cases, in particular lattice and polymeric systems, volume change moves may be
hard to perform, but particle insertions and deletions may be relatively easy, especially when
using configurational-bias methods. Escobedo and de Pablo [58,59] proposed a modification
of the Gibbs–Duhem approach that is based on the expression(

d(βµ)

dβ

)
sat

= −1(ρu)
1ρ

(9)

whereρ is the density(=N/V ) andu the energy per particle. This method was applied to
continuous-phase polymeric systems in [58] and to lattice models in [60].

The Gibbs–Duhem integration method excels in calculations of solid–fluid coexistence
[56, 57], for which other methods described in this paper are not applicable. An extension of
the method that assumes that the initial free-energy difference between the two phases is known
in advance, rather than requiring it to be zero, has been proposed by Meijer and El Azhar [61].
The procedure has been used in [61] to determine the coexistence lines of a hard-core Yukawa
model for charge-stabilized colloids.
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4.3. Pseudo-ensembles

The Gibbs–Duhem integration method represents a successful combination of numerical
methods and molecular simulations. Taking this concept even further, Mehta and Kofke [62]
proposed a ‘pseudo-grand canonical ensemble’ method in which a system maintains a constant
number of particles and temperature, but has a fluctuating volume to ensure that, at the
final density, the imposed value of the chemical potential is matched. The formalism still
requires that estimates of the chemical potential be made during the simulation. The main
advantage of the approach over more traditional grand canonical ensemble methods is that
it provides additional flexibility with respect to the method to be used for determination of
the chemical potential. For example, the ‘chain increment’ method [50] for chain molecules,
which cannot be combined with grand canonical simulations, can be used for the chemical
potential evaluations in a pseudo-grand canonical simulation (as in [48]).

The same ‘pseudo-ensemble’ concept has been used by Camp and Allen [63] to obtain a
‘pseudo-Gibbs’ method in which particle transfers are substituted for with volume fluctuations
of the two phases. The volume fluctuations are unrelated to the ones required for pressure
equality (equation (4)) but are instead designed to correct imbalances in the chemical potentials
of some of the components detected, for example, by test particle particle insertions.

While the main driving force in [62] and [63] was to avoid direct particle transfers,
Escobedo and de Pablo [59] designed a ‘pseudo-NPT ’ method to avoid direct volume
fluctuations which may be inefficient for polymeric systems, especially on lattices. Escobedo
[64] extended the concept for bubble-point and dew-point calculations in a ‘pseudo-Gibbs’
method and proposed extensions of the Gibbs–Duhem integration techniques for tracing
coexistence lines in multicomponent systems [65].

5. Histogram-reweighting grand canonical Monte Carlo simulation

Early in the history of development of simulation methods it was realized that a single
calculation can, in principle, be used to obtain information on the properties of a system
for a range of state conditions [66–68]. However, the practical application of this concept
was severely limited by the performance of computers available at the time. In more recent
years, several groups have confirmed the usefulness of this concept, first in the context of
simulations of spin systems [69–71] and later for continuous-space fluids [72–76]. In the
following subsections, we give a pedagogical review of histogram-reweighting methods for
grand canonical Monte Carlo (GCMC) simulations as applied to one- and multicomponent
systems. In addition, determinations of critical parameters from histogram data are briefly
reviewed.

5.1. One-component systems

A GCMC simulation for a one-component system is performed as follows. The simulation
cell has a fixed volumeV , and is placed under periodic boundary conditions. The inverse
temperature,β = 1/kBT , and the chemical potential,µ, are specified as input parameters to
the simulation. Histogram reweighting requires collection of data for the probabilityf (N,E)

of occurrence ofN particles in the simulation cell with total configurational energy in the
vicinity of E. This probability distribution function follows the relationship

f (N,E) = �(N, V,E)exp(−βE + βµN)

4(µ, V, β)
(10)
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where�(N, V,E) is the microcanonical partition function (density of states) and4(µ, V, β)

is the grand partition function. Neither� nor4 are known at this stage, but4 is a constant
for a run at given conditions. Since the left-hand side of equation (10) can be easily measured
in a simulation, an estimate for� and its corresponding thermodynamic function, the entropy
S(N, V,E), can be obtained by a simple transformation of equation (10):

S(N, V,E)/kB = ln�(N, V,E) = ln f (N,E) + βE − βµN +C. (11)

C is a run-specific constant. Equation (11) is meaningful only over the range of densities and
energies covered in a simulation. If two runs at different chemical potentials and temperatures
have a region of overlap in the space of(N,E) sampled, then the entropy functions can be
‘merged’ by requiring that the functions are identical in the region of overlap. To illustrate this
concept, we make a one-dimensional projection of equation (10) to obtain

f (N) = Q(N,V, β)exp(βµN)

4(µ, V, β)
. (12)

Histograms for two runs at different chemical potentials are presented in figure 3. There is a
range ofN over which the two runs overlap. Figure 4 shows the function lnf (N) − βµN
for the data of figure 3. From elementary statistical mechanics, this function is related to the
Helmholtz energy:

βA(N, V, β) = − lnQ(N,V, β) = ln f (N)− βµN +C. (13)

Figure 4 shows the raw curves forµ1 andµ2 as well as a ‘composite’ curve formed by shifting
data for the two runs by the amount indicated by the arrows. The combined curve provides
information over the combined range of particle numbers,N , covered by the two runs. Note
that by keeping only one-dimensional histograms forN we are restricted to combining runs
at the same temperature, while the more general form (equation (11)) allows combination of
runs at different temperatures.

µ1

f (
N

 )

N

µ2

Figure 3. A schematic diagram of the probabilityf (N) of occurrence ofN particles for two
GCMC runs for a pure component system at the same volumeV and temperatureT , but different
chemical potentials,µ1 andµ2.

Simulation data are subject to statistical (sampling) uncertainties, which are particularly
pronounced near the extremes of particle numbers and energies visited during a run. When data
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Composite

µ1

µ2

ln
[ 

f (
N

) 
] -

 β
µN

N

Figure 4. The function ln[f (N)]− βµN for the data of figure 3. The figure shows the raw curves
for µ1 andµ2 as well as a ‘composite’ curve formed by shifting the data by the amount indicated
by the arrows.

from multiple runs are combined as shown in figure 4, the question arises of how to determine
the optimal amount by which to shift the raw data in order to obtain a global free-energy
function. Ferrenberg and Swendsen [77] provided a solution to this problem by minimizing
the differences between predicted and observed histograms. In this approach, it is assumed that
multiple overlapping runs,i = 1, 2, . . . , R, are available for a given system. The composite
probability,℘(N,E;µ, β), of observingN particles and energyE, if one takes into account
all runs and assumes that they have the same statistical efficiency, is

℘(N,E;µ, β) =
( R∑
i=1

fi(N,E)exp[−βE + βµN ]

)/( R∑
i=1

Ki exp[−βiE + βiµiN − Ci ]
)

(14)

whereKi is the total number of observations (Ki =
∑

N,E fi(N,E)) for run i. The constants
Ci (also known as ‘weights’) are obtained by iteration from the relationship

exp(Ci) =
∑
E

∑
N

℘(N,E;µi, βi). (15)

Given an initial guess for the set of weightsCi , equations (14) and (15) can be iterated until
convergence is achieved. When many histograms are to be combined, this convergence of the
Ferrenberg–Swendsen weights can take a long time. Once this has been achieved, however,
all thermodynamic quantities for the system over the range of densities and energies covered
by the histograms can be obtained. For example, the mean configurational energyU(µ, β) is

〈U〉µ,β =
∑
E

∑
N

℘(N,E;µ, β)E (16)

and the mean densityρ(µ, β) is

〈ρ〉µ,β = 1

V

∑
E

∑
N

℘(N,E;µ, β)N. (17)



R36 A Z Panagiotopoulos

The pressure of a system can be obtained from the following expression. If the conditions
for run 1 are(µ1, V , β1) and for run 2(µ2, V , β2), then

C2 − C1 = ln
4(µ2, V , β2)

4(µ1, V , β1)
= β2P2V − β1P1V (18)

whereP is the pressure, since ln4 = βPV . Equation (18) can be used to obtain the absolute
value of the pressure for one of the two runs, provided that the absolute pressure can be
estimated for the other run. Typically, this is done by performing simulations for low-density
states for which the system follows the ideal-gas equation of state,PV = NkBT .

Up to this point, we assumed that a system exists in a one-phase region over the range of
densities and energies sampled. If a phase transition exists, then the system,in principle,
should sample states on either side of the phase transition, resulting in histograms with
multiple peaks. This is illustrated in figure 5, in which actual simulation data (from a single
run) are plotted for a simple-cubic-lattice homopolymer system [73] at a slightly subcritical
temperature. There are two states sampled by the run, one at low and one at high particle
numbers, corresponding to the gas and liquid states. The conditions for phase coexistence
are equality of temperature, chemical potential and pressure—the first two are satisfied by
construction. From equation (18), the integral under the probability distribution function is
proportional to the pressure. In the case of two distinct phases, the integrals should be calculated
separately under the liquid and gas peaks. The condition of equality of pressures can be satisfied
by reweighting the data until this condition is met. In section 5.3, we discuss how near-critical
histogram data can be used to obtain precise estimates of the critical parameters for a transition.
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Figure 5. Frequency of observation of states versus energy,E, and number of particles,N , for a
homopolymer of chain lengthr = 8 and coordination numberz = 6 on a 10× 10× 10 simple
cubic lattice. The conditions, following the notation of [73], areT ∗ = 11.5, µ∗ = −60.4. In order
to reduce clutter, data are plotted only for every third particle.

In the absence of phase transitions or at temperatures near a critical point, the values
of all observable quantities (such as the histograms of energy and density) are independent
of initial conditions, since free-energy barriers for transitions between states are small or
non-existent. However, at lower temperatures, free-energy barriers for nucleation of new
phases become increasingly large. The states sampled at a given temperature and chemical
potential depend on initial conditions, a phenomenon known as hysteresis. This is illustrated
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schematically in figure 6. For a supercritical isotherm,T > Tc, the mean value of the density
is a continuous function of the chemical potential, and the same value is obtained for given
conditions, irrespective of the starting configuration. By contrast, for a subcritical isotherm,
when the runs are started from a low-density state, at some value of the chemical potential, a
discontinuous ‘jump’ to a state of higher density is observed. The exact location of the jump
depends on the initial state and the specific mix of Monte Carlo moves used to change the
configuration of the system. When simulations are started in a high-density state, the system
remains on the high-density branch of the isotherm until some value of the chemical potential
is reached that is lower than the chemical potential of the jump from low- to high-density
states.

T
< TC

µ

<
 N

 >

T
> TC

Figure 6. A schematic diagram of the mean number of particles,〈N〉, versus the chemical potential,
µ, for a subcritical and a supercritical isotherm of a one-component fluid. The curve for the
supercritical isotherm has been shifted up for clarity.

The histogram-reweighting method can be applied to systems with large free-energy
barriers for transitions between states, provided that care is taken to link all states of interest via
reversible paths. One possibility is to utilize umbrella or multicanonical sampling techniques
[71,78] to artificially enhance the frequency with which a simulation samples the intermediate-
density region [72]. Multicanonical and umbrella sampling require as input an estimate of the
free energy in the intermediate-density region, which has to be obtained by trial and error. In
addition, a significant fraction of simulation time is spent sampling unphysical configurations
of intermediate density. An alternative approach is to link states by providing connections
through a supercritical path, in a process analogous to thermodynamic integration [5]. This
approach is illustrated schematically in figure 7. The filled square represents the critical point
for a transition, and open squares linked by dashed lines represent tie lines. Ellipses represent
the range of particle numbers and energies sampled by a single simulation. A near-critical
simulation samples states on both sides of the coexistence curve, while subcritical simulations
are likely to be trapped in (possibly metastable) states on either side. However, as long as
there is a continuous path linking all states of interest, the free energies and pressures can be
calculated correctly, and an accurate phase envelope can be obtained.

An example of the application of histogram reweighting for determining the phase
behaviour of a homopolymer model on the simple cubic lattice is illustrated in figure 8. The
phase behaviour and critical properties of the model for a range of chain lengths have been
studied in [73]. The system in this example is for chain lengthr = 8 and coordination number
z = 6. In this example, we first performed a simulation at reduced temperatureT ∗ = 11.5
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E
 

Figure 7. A schematic diagram of the energy,E, versus the number of particles,N , for a one-
component fluid with a phase transition. Squares linked by dashed lines are coexisting phases joined
by tie lines and the filled square indicates the critical point of the transition. Ellipses represent the
range of particle numbers and energies sampled during different GCMC runs.
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Figure 8. A phase diagram for a homopolymer of chain lengthr = 8 on a 10× 10× 10 simple
cubic lattice of coordination numberz = 6. Filled circles give the reduced temperature,T ∗, and
mean volume fraction,〈φ〉, of the three runs performed. Arrows from the run points indicate the
range of densities sampled for each simulation. The thick continuous line is the estimated phase
coexistence curve.

and chemical potentialµ∗ = −60.4, for which the raw histogram data are shown in figure 5.
The resulting average volume fraction for the run is indicated on figure 8 by the filled circle
at T ∗ = 11.5. The range of volume fractions sampled during the simulation is indicated on
figure 8 by the arrows originating at the run point. Because this run is near the critical point, a
very broad range of particle numbers and thus volume fractions is sampled during this single
run. The histogram from this run was then reweighted to lower temperatures and a preliminary
phase diagram was obtained. The estimated coexistence chemical potential atT ∗ = 9 was



Monte Carlo methods for phase equilibria of fluids R39

used as input to a new simulation, which sampled states near the saturated liquid line. The
same procedure was repeated, now with combined histograms from the first two runs, to obtain
an estimate of the coexistence chemical potential atT ∗ = 7. A new simulation was performed
to sample the properties of the liquid at that temperature. The total time for the three runs was
10 CPU min on a Pentium III 300 MHz processor. The final result of these three calculations
was the phase coexistence lines shown by the thick continuous lines in figure 8.

Two general observations can be made in relation to this example. First, it should be
pointed out that the histogram-reweighting method works much faster on smaller system sizes.
As system size increases, relative fluctuations in the number of particles and energy for a single
run at specified conditions decrease as the 1/2 power of the system volumeV . This implies
that more simulations are required to obtain overlapping histograms that cover the range of
energies and densities of interest. Moreover, the number of Monte Carlo moves required
to sample properties increases approximately linearly with system size in order to keep the
number of moves per particle constant. The computational cost of each Monte Carlo move
is proportional to system size for pairwise-additive long-range interactions and independent
of system size for short-range interactions. The net effect is that the total computational
effort required to obtain a phase diagram at a given accuracy scales as the 1.5 to 2.5 power of
system volume, respectively, for short- and long-range interactions. Fortunately, away from
critical points, the effect of system size on the location of the coexistence curves for first-order
transitions is typically small. In this example, calculations on a 153 system result in phase
coexistence lines practically indistinguishable from the ones shown in figure 8. The mean
absolute relative differences for the coexistence densities between the small and large systems
are 0.1% for the liquid and 1% for the (much-lower-density) gas, well within the width of the
coexistence lines in figure 8.

A second observation relates to calculations near critical points. The coexistence lines
in figure 8 do not extend above a temperature ofT ∗ = 11.6 because above that temperature
significant overlap exists between the liquid and vapour peaks of the histograms. This overlap
renders calculations of the liquid and gas densities imprecise. Larger system sizes suffer
less from this effect and can be used to obtain coexistence densities near critical points. As
discussed in section 5.3, a sequence of studies with increasing system size are also required to
obtain accurate estimates of critical points.

5.2. Multicomponent systems

The histogram-reweighting methodology for multicomponent systems [74–76] closely follows
the one-component version described above. The probability distribution function for
observingN1 particles of component 1 andN2 particles of component 2 with configurational
energy in the vicinity ofE for a GCMC simulation at imposed chemical potentialsµ1 andµ2,
respectively, at inverse temperatureβ in a box of volumeV is

f (N1, N2, E) = �(N1, N2, V ,E)exp(−βE + βµ1N1 + βµ2N2)

4(µ1, µ2, V , β)
. (19)

Equations (11) to (18) can be similarly extended to multicomponent systems.
The main complication in the case of multicomponent systems relative to the one-

component case is that the dimensionality of the histograms is one plus the number of
components, thus making their machine storage and manipulation somewhat more challenging.
For example, in the case of one-component systems, it is possible to store the histograms
directly as two-dimensional arrays. The memory requirements for storing three-dimensional
arrays for a two-component system make it impractical to do so. Instead, lists of observations
of particle numbers and energies are periodically stored on disk. It is important to select
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the frequency of sampling of the histogram information so that only essentially independent
configurations are sampled. This implies that sampling is done less frequently at high densities
for which the acceptance ration of the insertion and removal steps is lower. Sampling essentially
independent configurations also enforces the condition of equal statistical efficiency underlying
the Ferrenberg–Swendsen histogram combination equations (14) and (15).

5.3. Critical point determination

Recent advances in the determination of critical parameters for fluids lacking special
symmetries have been based on the concept of mixed-field finite-size scaling and have been
reviewed in detail by Wilding [79]. As a critical point is approached, the correlation lengthξ

grows without bound and eventually exceeds the linear system sizeL of the simulation box.
Singularities and discontinuities that characterize critical behaviour in the thermodynamic limit
are smeared out and shifted in finite systems. The infinite-volume critical point of a system
can, however, be extracted by examining the size dependence of thermodynamic observables,
through finite-size scaling theory [80–82]. The finite-size scaling approach proposed by Bruce
and Wilding [83, 84] accounts for the lack of symmetry between coexisting phases in most
continuous-space fluids. For one-component systems, the ordering operator,M, is proportional
to a linear combination of the number of particlesN and total configurational energyU :

M ∝ N − sU (20)

wheres is the field-mixing parameter. For multicomponent systems, an extra field-mixing
parameter appears for each added component—for example for binary systems,

M ∝ N1− sU − qN2 (21)

whereq is the field-mixing parameter for the number of particles of component 2.
General finite-size scaling arguments predict that the normalized probability distribution

for the ordering operatorM at criticality,℘(M), has a universal form. The order parameter
distribution for the three-dimensional Ising universality class is shown in figure 9 as a
continuous line. Also shown in figure 9 are data for a homopolymer of chain lengthr = 200
on a 50× 50× 50 simple cubic lattice of coordination numberz = 26 [73]. The data were
obtained by histogram-reweighting methods, by adjusting the chemical potential, temperature
and field-mixing parameters so as to obtain the best possible fit to the universal distribution.
The non-universal constantA and the critical value of the ordering operatorMc were chosen
so that the data have zero mean and unit variance. Due to finite-size corrections to scaling,
the apparent critical temperature,Tc(L), and density,ρc(L), deviate from their infinite-system
values,Tc(∞) andρc(∞). They are expected to follow scaling relationships with respect to
the simulated system size,L:

Tc(L)− Tc(∞) ∝ L−(θ+1)/ν

ρc(L)− ρc(∞) ∝ L−(1−α)/ν (22)

whereθ, ν andα are, respectively, the correction-to-scaling exponent, the correlation length
exponent and the exponent associated with the heat capacity divergence. For the three-
dimensional Ising universality class, the approximate values of these exponents are [85, 86]
(θ, ν, α) ≈ (0.54, 0.629, 0.11). Figure 10 demonstrates these scaling relationships for the
critical temperature and density of the square-well fluid of rangeλ = 3 [87].

5.4. Thermodynamic and Hamiltonian scaling

Finally in this section, we would like to mention briefly two methods that are related to
histogram reweighting. Thermodynamic scaling techniques proposed by Valleau [88] are
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Figure 9. The ordering operator distribution for the three-dimensional Ising universality class
(continuous line—data courtesy of N B Wilding). Points are for a homopolymer of chain length
r = 200 on a 50× 50× 50 simple cubic lattice of coordination numberz = 26 [73]. The non-
universal constantA and the critical value of the ordering operatorMc were chosen so that the data
have zero mean and unit variance.

0 0.02 0.04 0.06
L

−(1−α)/ν

.256

.258

.260

.262

0 0.002 0.004 0.006
L

−(θ+1)/ν

9.6

9.7

9.8

9.9
(a)

(b)

Tc(L)

ρc(L)

Figure 10. Critical temperature (a) and density (b) scaling with linear system size for the square
fluid of rangeλ = 3. Solid lines represent a least-squares fit to the points. Reprinted by permission
from [87]. ©1999 American Institute of Physics.
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based on calculations in theNPT rather than the grand canonical (µV T ) ensemble and provide
information for the free energy over a range of volumes rather than a range of particle numbers.
Thermodynamic scaling techniques can also be designed to cover a range of Hamiltonians
(potential models) in the Gibbs [89] or grand canonical [90] ensembles. In their Hamiltonian
scaling form, the methods are particularly useful for optimizing parameters in intermolecular
potential models to reproduce experimental data such as the coexisting densities and vapour
pressures. Thermodynamic and Hamiltonian scaling methods require estimates for the free
energy of the system as a function of the conditions, so that the system can be forced to sample
the range of states of interest with roughly uniform probability, as for the umbrella sampling
Monte Carlo method [78].

6. Smart sampling for difficult systems

6.1. Configurational-bias sampling

The most common bottleneck in achieving convergence in methods that rely on particle
transfers is the prohibitively low acceptance of transfer attempts. For dense fluid phases,
especially for complex, orientation-dependent intermolecular potentials, configurations with
‘holes’ in which an extra particle can be accommodated are highly improbable, and the converse
step of removing a particle involves a large cost in energy. Configurational-bias sampling
techniques significantly improve sampling efficiency for Gibbs or grand canonical Monte
Carlo simulations. The methods have been reviewed in detail in [5, 13] and the chapter by
Frenkel in [10] and will only be covered briefly in the present article.

Configurational-bias methods trace their ancestry to biased sampling for lattice polymer
configurations proposed by Rosenbluth and Rosenbluth [91]. Development of configurational-
bias methods for canonical and grand canonical simulations and for continuous-space models
took place in the early 1990s [92–96] and dramatically expanded the range of intermolecular
potential models that can be studied by the methods described in the previous sections.

Configurational-bias methods are based on segment-by-segment insertions or removals of
a multisegment molecule. Several trial directions are attempted for every segment insertion,
and a favourable growth direction is preferentially selected for the segment addition. In this
way, the acceptance probability of insertions is greatly enhanced. For each segment growth or
removal step, a correction factor (often called ‘Rosenbluth weight’) is calculated. The product
of the Rosenbluth weights of all steps is incorporated in the overall acceptance criterion for
particle insertions and removals in order to correct for the bias introduced by the non-random
growth along preferential directions.

6.2. Expanded ensembles

Another approach for handling multisegment molecules is based on the concept of expanded en-
sembles [97–100]. Expanded ensembles for chain molecules construct a series of intermediate
states for the molecule of interest, from a non-interacting (phantom) chain to the actual chain
with all segments and interactions in place. These intermediate states can be semi-penetrable
chains of the full length [97,98] or shortened versions of the actual chain [99,100]. Estimates
of the free energy of the intermediate states are required to ensure roughly uniform sampling, as
for thermodynamic and Hamiltonian scaling methods mentioned in the previous section. The
advantage of expanded ensembles over configurational-bias methods is that arbitrarily com-
plex long molecules can be sampled adequately, if sufficient computational effort is invested
in constructing good approximations of the free energies of intermediate states.
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7. Applications

The methods described in the previous sections enable fast and accurate calculations of the
phase behaviour of fluids. Their availability has resulted in a veritable explosion in the number
of studies of the phase behaviour of both simple ‘toy model’ and realistic potentials for fluids
in the past decade. Previous reviews [6–9] have covered applications of such methods up to
1995, so the focus of the following sections will be on research that has been published since
1995.

The section is divided into three subsections. In the first, we discuss studies of model
systems, such as the square well of Lennard-Jones fluids, that do not aim at representing
exactly a given real fluid. Studies of the phase behaviour of model systems are made for
testing theoretical models of the phase behaviour and elucidating general characteristics of the
phase behaviour due to ‘generic’ interactions present in broad classes of systems. The last two
subsections are devoted to studies of realistic models of pure fluids and mixtures, respectively.
The primary purpose of these studies is to obtain quantitative agreement with experimental
data.

7.1. Model systems

Simple spherically symmetric model potentials have been the subject of several studies over
the period covered in the present review. Square-well fluids with rangesλ = 1.5 and 3 were
studied by histogram methods in [101] and fluids withλ = 2 in [102], using Gibbs ensemble
calculations. The critical point of the full Lennard-Jones (6, 12) pure fluid was obtained
by histogram methods first under hyperspherical boundary conditions [103] and later under
conventional periodic boundary conditions [76]. The estimate from the critical point from this
last study isT ∗c = 1.313 20± 0.000 07, ρ∗c = 0.316± 0.001. Gas–liquid nucleation for the
Lennard-Jones system was studied by [104]. The phase diagram of the hard-core Yukawa
fluid with parameters adjusted to mimic the Lennard-Jones fluids was obtained in [105].
Exponential-6 fluids were studied by [106] and [90]. The effect of three-body Axilrod–
Teller interactions on vapour–liquid and liquid–liquid equilbria was studied in [107, 108].
Spherically symmetric model potentials with varying interaction range have been studied
by [110–112], in order to model protein precipitation and crystallization. A combination of
Gibbs ensemble calculations for the liquid–solid parts of the phase diagrams and Gibbs–Duhem
integration for the liquid–solid parts were used in these studies. As the range of the attractive
interactions is decreased, it is found that the liquid–solid critical point becomes metastable
because solidification occurs first.

Binary Lennard-Jones mixtures were studied by [113], using the multiple-box extension
of the Gibbs ensemble method [33]. Closed-loop immiscibility behaviour was found for this
system that has only isotropic interactions using a set of parameters with cross-interaction
diameter with a negative deviation from the Lorentz–Berthelot rule. Liquid–vapour phase
behaviour of a symmetric binary Lennard-Jones fluid mixture was studied by Wildinget al [75]
using histogram methods. Depending on the relative strength of the unlike-pair interactions,
the phase diagram was found to include a tricritical point. The phase behaviour of the Widom–
Rowlinson mixture was studied in [114]. The Widom–Rowlinson mixture is a two-component
fluid where like species do not interact and unlike species interact via a hard-core repulsion.
As the density is increased this fluid phase separates. Phase separation in binary mixtures of
hard spheres with non-additive diameters was studied in [115]. Phase equilibria for model
ternary chain systems were studied by [22,116,117]. A mixture of square-well particles with
directional bonding interactions was studied by Davieset al [118]. The system has a closed
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immiscibility loop, with miscibility at low temperatures being promoted by association between
unlike components. Vapour–liquid equilibria for a monomer–dimer square-well mixture were
also obtained by the same group [119,120].

Several studies of model one-component systems with non-spherical interactions have
been published. Polydisperse systems of infinitely thin platelets have been studied by means
of semi-grand Gibbs simulations by [121]. Segregation of the larger particles in the nematic
phase was observed. The same group [122] studied the phase behaviour of rodlike colloids
with attractive interactions. The effect of attractive interactions on the phase behaviour of
the Gay–Berne liquid-crystal model has been studied in [123]. Phase equilibria in long-chain
lattice polymer models were studied by [19,28,73].

Studies of polar fluids included pure and mixed dipolar fluids [124, 125], dipolar two-
centre Lennard-Jones fluids [126], quasi-two-dimensional Stockmayer fluids [127], polarizable
Stockmayer fluids [128] and quadrupolar fluids [129, 130]. Dipolar hard-core systems were
found to exhibit an ‘island’ of vapour–liquid phase coexistence for a certain range of elongations
[131]. A system with highly directional interactions was also found to lack normal vapour–
liquid coexistence [132]. A central-force model potential for associating fluids was studied
by [133] and homonuclear and heteronuclear Lennard-Jones chains with association sites were
studied by [134].

The phase behaviour of the restricted primitive model was studied by histogram methods on
the surface of a four-dimensional hypersphere [135,136] and under normal periodic boundary
conditions [87]. For this strongly interacting system, previous calculations using the Gibbs
ensemble [101] were found to overestimate the true critical temperature of the model by
10%, due to apparent extensions of the coexistence curve to supercritical temperatures in finite
systems. The same effects explain the overestimation of the critical temperature of the Lennard-
Jones fluid from Gibbs ensemble studies discussed in the previous paragraph, even though the
degree of overestimation is much lower for the less strongly interacting Lennard-Jones system.

7.2. Realistic potential models—pure fluids

A large number of intermolecular potential models for fluids are available (e.g. [137–141],
optimized to reproduce the structural and energetic properties (heat of vaporization etc) of
the liquid state around room temperature. Such models were not designed and cannot be
expected to model accurately the phase coexistence properties, as demonstrated, for example,
for n-alkanes [142, 143], water [144] and hydrogen fluoride [145, 146]. The simulation
techniques for determining the phase behaviour described in previous sections of the present
paper have only recently become able to handle complex, realistic potential models. A number
of research groups are currently involved in the development of intermolecular potential models
that can reproduce phase coexistence properties to near-experimental accuracy. Most of the
models described in this section are effective two-body potentials, for reasons of computational
expedience. The influence of three-body forces on the gas–liquid coexistence of argon was
studied in [147].

Hydrocarbon molecules are ubiquitous in industrial processes and form the building blocks
of biological systems. They are non-polar and consist of a small number of groups, thus
making them the logical starting point for potential model development. Siepmann, Karaborni
and Smit [142, 148, 149] used configurational-bias Gibbs ensemble simulations to obtain an
optimized potential model and the critical properties of then-alkanes homologous series. At
the time, there were conflicting experimental data on the dependence of the critical density on
chain length, which were resolved with the help of the simulations. Spyriouniet al [49] have
studied the phase behaviour ofn-hexadecane for the Dodd–Theodorou potential [150] and
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obtained good agreement for the phase envelope but not for the vapour pressure. Branched
alkanes have been studied by [151–154], perfluorinated alkanes by [155], fluoromethanes
by [156,157] andα-olephins by [158].

Three accurate united-atom potential sets forn-alkanes have appeared recently. The
TRAPPE [159] and NERD models [160] use the Lennard-Jones (12,6) potential to describe
non-bonded interactions among methyl and methylene groups, while the model of Errington
and Panagiotopoulos [161] uses the exponential-6 functional form. All three reproduce the
experimental phase diagrams and critical points. The exponential-6 model is slightly better
as regards representation of the vapour pressures. Figures 11 and 12 illustrate the quality
of representation of experimental data for the newer optimized models. Deviations from
experimental data for the exponential-6 united atom model are comparable to those for a
recently developed explicit hydrogen model [162].

Figure 11. Phase diagrams of selectn-alkanes. The curves from bottom to top are for ethane,
propane, butane, pentane, hexane, octane and dodecane. Circles represent calculations for the
model of [161]. Uncertainties are smaller than the size of the symbols. A solid line is used for
experimental data and an asterisk for the experimental critical point. Reprinted by permission
from [161]. ©1999 American Chemical Society.

The phase behaviour of C60 has been investigated [109, 163–165] using spherically
symmetric potentials in order to determine whether the system lacks a liquid phase. Model
systems with sufficiently short range attractive interactions do not have a stable liquid phase
because the liquid–solid transition pre-empts the normal liquid–vapour transition, as mentioned
in section 7.1. The answer for C60 is unclear; some studies [109, 164] report a narrow liquid
region, while others [163,165] suggest that the liquid–vapour critical point lies in the metastable
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Figure 12. Vapour pressures of selectedn-alkanes. The curves from right to left are for ethane,
propane, butane, pentane, hexane, octane and dodecane. The symbols are the same as for figure 11.
Reprinted by permission from [161]. ©1999 American Chemical Society.

region of the phase diagram.
Several studies of the phase behaviour of realistic models for polar fluids appeared in the

period covered in the present review. The phase behaviour of alkanols was studied by [166],
hydrogen sulphide was studied by [167], carbon disulphide by [168] and alkali fluids by [169].
Flexible models of water were studied by histogram methods by [170]. A modification
of the SPCE model for water to better reproduce the vapour–liquid coexistence properties
was proposed by [171]. Polarizable water models were studied by [172], who found rather
disappointing agreement with experimental data for several literature polarizable potentials.
A new fixed-point charge model for water based on the exponential-6 functional form for the
non-polar interactions was proposed by [173]. The potential of [173] does an excellent job
for the phase coexistence envelope and vapour pressure from the triple to the critical point of
water, but fails to reproduce accurately the dielectric constant and structure of the liquid at
room temperature.

Studies of the phase behaviour for some quantum fluids have appeared in recent years.
Wang et al [174–176] studied the phase behaviour and free energy of H2 and Ne at low
temperatures using path integral versions of Gibbs and grand canonical Monte Carlo techniques
that they developed. The same group later investigated the adsorption of hydrogen in graphitic
slit pores [177].

7.3. Realistic potential models—mixtures

Alkane mixtures have been studied extensively in recent years. For example, Chen and
Siepmann investigated supercritical ethane andn-heptane mixtures and obtained the free
energy of transfer forn-pentane andn-heptane between He andn-heptane liquid phases [162].
Delhommelleet al [178] studied mixtures ofn-alkanes using both a united-atom model [148]
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and anisotropic united-atom models due to Toxvaerd [179,180]. Other recent studies of alkane
mixtures include [161,181,182]. The solubility of small molecules such N2 and methane and
their mixtures in polyethylene, including effects of polymer crystallinity, was studied in [183].
Mixtures withα-olephins were studied in [48,158]. In general, excellent agreement between
experiment and simulation results is obtained for these non-polar mixtures, provided that the
pure component potentials have been optimized to reproduce the phase envelope and vapour
pressures of the pure components. No mixture parameters are necessary for the calculations.

Grand canonical histogram-reweighting Monte Carlo simulations were used to obtain
the phase behaviour of several mixtures with polar and non-polar components in [182]. The
conventional Lorentz–Berthelot combining rules [184], as well as a set of combining rules due
to Kong [185], were used to obtain unlike-pair potential parameters. The Lorentz–Berthelot
rules generally result in more attractive unlike-pair interactions than the Kong rules. For then-
alkane/CO2 systems, predicted phase diagrams are in excellent agreement with experiment
when the Kong combining rules are used but in significantly worse agreement when the
Lorentz–Berthelot rules are used. An example is shown in figure 13 for the propane–CO2

mixture. For mixtures with CH3OH and H2O, the Lorentz–Berthelot rules yield slightly better
agreement with experiment than the Kong rules.
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Figure 13. A propane/CO2 pressure–composition diagram. Experimental data:T = 327.59 K
(open circles) [193],T = 294.26 K (open diamonds) [194]. 1 bar= 105 Pa. GCMC simulations
with the Lorentz–Berthelot (solid line) and Kong combining rules (dashed line). The average
statistical uncertainties for the simulation data in pressure and composition are±0.47 bar and
±0.0050, respectively. Reprinted by permission from [182]. ©1999 Taylor and Francis.

Other phase diagrams of realistic systems with polar components studied recently by
simulation methods include those of methanol–ethane [186], methanethiol with propane [187],
fluorocarbon mixtures [188] and mixtures of CO2 with alkanes and fluoroalkanes [189]. The
Lorentz–Berthelot rules were used in these studies. It is interesting that for then-hexane–
CO2 mixture studied in [189] deviations of similar magnitude and direction to those for the



R48 A Z Panagiotopoulos

n-pentane–CO2 were observed in [182] (continuous line in figure 13), even though different
pure component potential models were used in the two studies. In other recent studies of binary
and ternary systems with alkanes and CO2 [190,191], binary interaction parameters were used
to acheive good agreement with experiment, a clearly less attractive alternative thana priori
predictions based solely on pure component potentials. The Henry’s law constants and phase
diagrams for methane–water and ethane–water systems have been studied by [192], resulting
in modest agreement with experimental data.

8. Concluding remarks

A novice researcher interested in obtaining the phase behaviour of a fluid is now faced with
a bewildering choice among a number of alternative methods and their variations. In this
section, similarities and differences among the methods, their relative performance and their
ease of implementation will be discussed.

Simulations with an explicit interface appear, at first glance, to be relatively simple to
implement and perform. Unlike most other methods discussed here, interfacial simulations
can also be performed using molecular dynamics codes. However, they provide an inefficient
route to the phase coexistence properties. Unless the properties of the interface itself (or the
surface tension) are of interest, other methods discussed in the present article provide better
alternatives.

The majority of recent studies discussed in section 7 have been performed using various
implementations of the Gibbs ensemble, often combined with configurational-bias methods
to improve sampling for multisegment molecules. The Gibbs method is relatively easy to
implement and provides direct information on the properties of coexisting phases from a
single simulation. One major weakness of the methodology is that it is not applicable to solid
or highly structured phases. For such systems, the only possible choice is the Gibbs–Duhem
integration method and its variations. The Gibbs–Duhem method, however, needs to start from
a point on the coexistence curve.

The accuracy of the Gibbs ensemble method for a given amount of computer time does not
seem to match the accuracy of histogram-reweighting methods [182]. Histogram-reweighting
methods are also inherently better at determining critical points via the finite-size scaling
formalism. On the negative side, the effort required to implement histogram combination and
reweighting is more than for the Gibbs ensemble method. Histogram-reweighting methods are
also indirect, requiring the assembly of the free-energy function of a system from a series of
simulations. The efficiency of histogram methods decreases rapidly with system size. Despite
these disadvantages, they are probably the most promising for future applications.

TheNPT +test particle method shares with histogram-reweighting techniques the feature
that it proceeds by computation of the chemical potential for a number of state points.
Histogram-reweighting methods, however, cover a range of densities and temperatures in
a single simulation. In addition, data from separate runs can be combined in a systematic way
only for histogram-reweighting methods. A variation of theNPT + test particle method is
the SPECS method for systems of long-chain molecules [48, 49]. The SPECS method is a
good alternative to expanded-ensemble Gibbs Monte Carlo calculations for cases for which
configurational-bias sampling methods become inefficient.

Interesting connections between many of the methods discussed in the present article
have been pointed out by Escobedo [64, 65]. In particular, Escobedo suggests that Gibbs–
Duhem integration, pseudo-ensembles and theNPT + test particle method can be considered
as low-order approximations of a histogram-reweighting approach.

In the area of applications, an important goal for research in the coming years will be to
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develop a set of pure component group-based potentials and combining rules that can be used
for general predictions of both pure component and mixture phase behaviour. Early results for
realistic mixtures [182] suggest that relatively simple intermolecular potential models can be
used to predict the phase behaviour of broad classes of binary systems. For mixtures with large
differences in polar character of the components, however, present models do not always result
in quantitative agreement with experiment. New models that include higher-order interactions
such as polarizability may be suitable for this purpose, a hypothesis that will need to be tested
in the future.
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